Part Number Hot Search : 
LC040 KSC5031 P4KE6 G40338 KDR393S MC130 CCLH080 IS93C
Product Description
Full Text Search
 

To Download PMB2333-R Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ics for communications mixer/amplifier pmb 2333 version 1.2 preliminary data sheet 09.97 t2333-xv12-p3-7600
edition 09.97 published by siemens ag, bereich halbleiter, marketing- kommunikation, balanstra?e 73, 81541 mnchen ? siemens ag 1995. all rights reserved. attention please! as far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. the information describes the type of compo- nent and shall not be considered as assured characteristics. terms of delivery and rights to change design reserved. for questions on technology, delivery and prices please contact the semiconductor group offices in germany or the siemens companies and representatives worldwide (see address list). due to technical requirements components may contain dangerous substances. for infor- mation on the types in question please contact your nearest siemens office, semiconductor group. siemens ag is an approved cecc manufac- turer. packing please use the recycling operators known to you. we can also help you C get in touch with your nearest sales office. by agreement we will take packing material back, if it is sorted. you must bear the costs of transport. for packing material that is returned to us un- sorted or which we are not obliged to accept, we shall have to invoice you for any costs in- curred. components used in life-support devices or systems must be expressly authorized for such purpose! critical components 1 of the semiconductor group of siemens ag, may only be used in life-support devices or systems 2 with the ex- press written approval of the semiconductor group of siemens ag. 1 a critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effective- ness of that device or system. 2 life support devices or systems are intend- ed (a) to be implanted in the human body, or (b) to support and/or maintain and sus- tain human life. if they fail, it is reasonable to assume that the health of the user may be endangered. ausgabe 09.97 herausgegeben von siemens ag, bereich halbleiter, marketing- kommunikation, balanstra?e 73, 81541 mnchen ? siemens ag 1995. alle rechte vorbehalten. wichtige hinweise! gew?hr fr die freiheit von rechten dritter lei- sten wir nur fr bauelemente selbst, nicht fr anwendungen, verfahren und fr die in bau- elementen oder baugruppen realisierten schaltungen. mit den angaben werden die bauelemente spezifiziert, nicht eigenschaften zugesichert. lieferm?glichkeiten und technische ?nderun- gen vorbehalten. fragen ber technik, preise und lieferm?g- lichkeiten richten sie bitte an den ihnen n?chstgelegenen vertrieb halbleiter in deutschland oder an unsere landesgesell- schaften im ausland. bauelemente k?nnen aufgrund technischer erfordernisse gefahrstoffe enthalten. aus- knfte darber bitten wir unter angabe des be- treffenden typs ebenfalls ber den vertrieb halbleiter einzuholen. die siemens ag ist ein hersteller von cecc- qualifizierten produkten. verpackung bitte benutzen sie die ihnen bekannten ver- werter. wir helfen ihnen auch weiter C wenden sie sich an ihren fr sie zust?ndigen vertrieb halbleiter. nach rcksprache nehmen wir verpackungsmaterial sortiert zurck. die transportkosten mssen sie tragen. fr verpackungsmaterial, das unsortiert an uns zurckgeliefert wird oder fr das wir keine rcknahmepflicht haben, mssen wir ihnen die anfallenden kosten in rechnung stellen. bausteine in lebenserhaltenden ger?ten oder systemen mssen ausdrcklich dafr zugelassen sein! kritische bauelemente 1 des bereichs halblei- ter der siemens ag drfen nur mit ausdrckli- cher schriftlicher genehmigung des bereichs halbleiter der siemens ag in lebenserhalten- den ger?ten oder systemen 2 eingesetzt wer- den. 1 ein kritisches bauelement ist ein in einem lebenserhaltenden ger?t oder system ein- gesetztes bauelement, bei dessen ausfall berechtigter grund zur annahme besteht, da? das lebenserhaltende ger?t oder sy- stem ausf?llt bzw. dessen sicherheit oder wirksamkeit beeintr?chtigt wird. 2 lebenserhaltende ger?te und systeme sind (a) zur chirurgischen einpflanzung in den menschlichen k?rper gedacht, oder (b) untersttzen bzw. erhalten das menschli- che leben. sollten sie ausfallen, besteht berechtigter grund zur annahme, da? die gesundheit des anwenders gef?hrdet wer- den kann.
pmb 2333 revision history: current version: 09.97 previous version: 06.96 page (in 06.96 version) page (in new version) subjects (major changes since last revision) 10 10 supply voltage -> 5.0v max. 10 10 input voltage v lo/x -> 5.0v max. 10 10 input voltage v ai -> v ao +0.3v max. 10 input voltage v ai ac peak -> -2v min. 10 10 input voltage v gc -> -0.3v min. / v s +0.3 max. 10 10 input voltage v stb -> 5.0v max. 10 10 open collector output voltage v mo/x ->1.7v min. / 5.0v max. 10 amplifier current (base, peak) i ai -> 6ma 10 amplifier power dissipation p amptot -> 105mw 10 11 thermal resistance r thja -> 213k/w 11 thermal resistance r thso -> 160k/w 11 esd integrity 25 26 amplifier f=0.9ghz -> g opt 26 27 amplifier f=1.8ghz -> g opt 32 33 diagram 5 - identical values - new printout update of / additional application information correction of printing mistakes pmb 2333 revision history: current version: 06.96 previous version: 11.95 page (in 11.95 version) page (in 06.96 version) subjects (major changes since last revision) update of rf/s-parameters becauce of cavitiy change, correction of printing mistakes, update of application circuits
pmb 2333 table of contents page semiconductor group 4 09.97 1overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 1.1 functional description, benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 1.2 applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 1.3 pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 1.4 pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 1.5 functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 1.6 circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.1 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.2 operational range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 2.3 ac/dc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 2.4 test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 3 application data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 3.1 receiver application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 3.1.1 shortform data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 3.1.2 measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 3.1.3 application hint - mixer metrics versus mixer current . . . . . . . . . . . . . . . . . . .40 3.1.4 circuit diagram and pcb layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 3.2 upconversion application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 3.2.1 shortform data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 3.2.2 measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 3.2.3 circuit diagram and pcb layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 3.3 receiver/saw application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 3.3.1 shortform data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 3.3.2 system calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 3.3.3 measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.3.4 circuit diagram and pcb layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 4 package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
p-tssop-16 semiconductor group 5 09.97 mixer/amplifier pmb 2333 version 1.2 bipolar ic type version ordering code package pmb 2333 v1.2 q67006-a6128 p-tssop-16 1overview 1.1 functional description, benefits ? new b6hf bipolar technology, 25ghz f t ? small outline p-tssop 16 package ? reduced external components ? frequency range up to 3.0ghz ? amplifier may be used as lna or driver ? lna mode ?1.7db typ. noise figure at 1.8ghz ?5ma typ. current consumption ? driver mode ? +12dbm output at 1db compression ? 20ma current consumption ? gilbert cell mixer with high gain ? 2.7 - 4.5v voltage supply ? -40c to +85c operational temperature range ? standby function ? high isolation values for amplifier and mixer ? good crosstalk performance 1.2 applications ? cellular radio systems ? cordless telephone systems ?wlan-systems
pmb 2333 semiconductor group 6 09.97 1.3 pin configuration (top view) p-tssop16 aref ai gnd1 gnd1 mo mox vcc lox ao gc gnd1 stb mix mi gnd2 lo 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9
pmb 2333 semiconductor group 7 09.97 1.4 pin definitions and functions pin no. symbol function 1 aref amplifier bias supply for signal input 2 ai amplifier signal base input 3 gnd1 amplifier ground 4 gnd1 amplifier ground 5 mo mixer signal open collector output 6 mox mixer signal open collector output 7 vcc voltage supply total circuit 8 lox mixer local oscillator signal base input, inverted 9 lo mixer local oscillator signal base input, not inverted 10 gnd2 mixer ground 11 mi mixer signal emitter input, not inverted 12 mix mixer signal emitter input, inverted 13 stb standby mixer and bandgap 14 gnd1 amplifier ground 15 ao amplifier signal open collector output 16 gc amplifier gain control
pmb 2333 semiconductor group 8 09.97 1.5 functional block diagram 1 2 3 4 5 6 7 8 12 13 9 10 11 16 15 14 bias vcc lox mo mox gnd 1 stb ai aref ao gc gnd2 lo mix mi gnd1 gnd1 mo mox lo lox mi mix bias1 bias2 mixer amplifier
pmb 2333 semiconductor group 9 09.97 1.6 circuit description mixer the mixer used in this design is a general purpose up-/down conversion gilbert cell mixer. via the pins mi/mix the rf enters the ic. using an external supplied local oscillator at lo/lox a converted output signal is created at the open collector output pins mo/mox. the open collector pins need to be connected to an external voltage supply. the rf connection to the mixer inputs can be single ended on balanced, capacitive or inductive. to improve the mixer performance external resistors at mi/mix make it possible to adjust the mixer current. voltage supply for the mixer has to be connected to the pin vcc and to gnd2. amplifier the amplifier may be used as a low noise amplifier lna or as a driver. at pin ai the rf signal enters the ic, at the open collector output ao, which need to be connected to supply voltage, the amplified signal is external available for further use. matching networks at in-/and output can be used for improving the gain and the noise performance. to reduce the series feedback of the emitter line the amplifier is connected to ground via three gnd1 pins. at aref a internal supplied reference voltage is available for the dc biasing of ai. this dc output should be implemented in an input matching network. the voltage supply for the amplifier is also vcc. the dc-level at the pin gc allows to adjust the amplifier current. lower current is recommended for using the amplifier as an lna, high current for using it as a driver. common differential signals and symmetrical circuits are used throughout the mixer part of the ic. an internal bias driver generates supply voltage and temperature compensated reference voltages. the stb pin allows the mixer and bandgap part of the ic to be switched in a low power mode. all pins with the exception of gnd1,2 and ai/ao are esd protected.
pmb 2333 semiconductor group 10 09.97 2 electrical characteristics 2.1 absolute maximum ratings the maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the ic will result. ambient temperature t amb = -40c...+85c # parameter symbol limit values units remarks min max 1 supply voltage v s -0.3 5.0 v 2a input voltage v mi/mix -0.3 1.9 v v s = 0 2b input voltage v lo/lox 0.6 v s +0.3 5.0max. v v 2c input voltage v ai -0.3 v ao +0.3 3.5max. v v 2d input voltage (ac peak) v ai -2 v freq.>1mhz i ai < na 2e input voltage v gc -0.3 v s +0.3 2.7max. v v 2f input voltage v stb -0.3 v s +0.3 5.0max. v v 3a output voltage v aref -0.3 2.0 v 3b open collector output voltage v mo/mox 1.7 v s +0.3 5.0max. v v 3c open collector output voltage v ao -0.3 3.5 v base open 3d open collector output voltage v ao -0.3 7.0 v r b <50k w 4a amplifier current (collector) i ao 30 ma 4b amplifier current (base, peak) i ai 6.0 ma dc and ac 4c amplifier power dissipation p amptot 105 mw 5 differential input voltage vi diff 2.0 v pp 6 junction temperature t j 125 c
pmb 2333 semiconductor group 11 09.97 1) attention: do not exceed the max. junction temperature 2) junction to soldering point, simulated with fem 3) hbm according mil std 883d, method 3015.7,and eos/esd assn. standard s5.1-1993 absolute maximum ratings the maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the ic will result. ambient temperature t amb = -40c...+85c # parameter symbol limit values units remarks min max 7 storage temperature t s -40 125 c 8a thermal resistance r thja 213 k/w 1) 8b thermal resistance r thso 160 k/w 2) 9 esd integrity, all pins without ai,ao and gnd1/2 v esd -500 500 v 3)
pmb 2333 semiconductor group 12 09.97 2.2 operational range within the operational range the ic operates as described in the circuit description. the ac/dc characteristic limits are not guaranteed. supply voltage v vcc = 2.7v...4.5v, ambient temperature t amb = -40c...85c note: power levels refer to 50 ohms impedance # parameter symbol limit values units remarks min max 1 ai input frequency f ai 3000 mhz 2 mi/x input frequency f mi 3000 mhz 3 lo/x input frequency f lo 3000 mhz 4 if intermediate frequency f if 3000 mhz 5 standby voltage on stb on 2.0 v s v 6 standby voltage off stb off 00.5v 7 gain control voltage, high gc high 2.0 2.7 v diagram 5 8 gain control voltage, low gc low 0 0.6 v diagram 5
pmb 2333 semiconductor group 13 09.97 2.3 ac/dc characteristics ac/dc characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. typical characteristics are the median of the production. supply voltage v vcc = 2.7v...4.5v, ambient temperature t amb = +25c * minimum value for external resistors at mi/mix: r1=r2=33ohm # parameter symbol limit values units test conditions test circuit min typ max supply current 1a supply current, total ic i 5,6,7,15 23.6 ma stb on, no external resistors at mi/mix* 1, i ao =20 ma 1b supply current, total ic i 5,6,7,15 1.6 ma stb on, no external resistors at mi/mix* 1, i ao =0 ma 2 supply current, total ic i 5,6,7,15 <20 a stb off, gc=0v 1
pmb 2333 semiconductor group 14 09.97 ac/dc characteristics ac/dc characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. typical characteristics are the median of the production. supply voltage v vcc = 2.7v to 4.5v, ambient temperature t amb = +25 all amplifier measurements have be done with siemens rt5880 duroid (teflon) boards # parameter symbol limit values unit test conditions test circuit min typ max amplifier-driver, signal input ai, i ao =20ma, v ao =3.3v, f=2.5ghz 3 input impedance, vs. freq. s 11 diagram 3a 3 4 max. input level, 1db compression p ai 0.0 dbm f=2.5ghz 1 5 input intercept, third order iicp dai 10.0 dbm f=2.5ghz 1 amplifier-driver, signal output ao, i ao =20ma, v ao =3.3v, f=2.5ghz 6 output current i ao 20.0 ma 1 7 output impedance vs. freq. s 22 diagram 3a 3 8 power gain s 21amp +12.5 db f=2.5ghz 1 amplifier-driver, signal input ai, i ao =0ma, v ao =3.3v, f=2.5ghz 9 input impedance, vs. freq. s 11 diagram 3c 3 10 max. input level, 1db change p ai 0.0 dbm f=2.5ghz 1 11 input intercept, third order iicp ai 20.0 dbm f=2.5ghz 1 amplifier-driver, signal output ao, i ao =0ma, v ao =3.3v, f=2.5ghz 12 output current i ao 0ma 1 13 output impedance vs. freq. s 22 diagram 3c 3 14 power gain s 21amp < -13 db f=2.5ghz 1
pmb 2333 semiconductor group 15 09.97 ac/dc characteristics ac/dc characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. typical characteristics are the median of the production. supply voltage v vcc = 2.7v to 4.5v, ambient temperature t amb = +25 all lna measurements have be done with siemens rt5880 duroid (teflon) boards # parameter symbol limit values unit test conditions test circuit min typ max amplifier-lna, signal input ai, i ao =5ma, v ao =3.3v, f=1.8ghz 15 input impedance, vs. freq. s 11 diagram 3b 3 16 max.input level, 1db compression p ai -12.0 dbm f=1.8ghz 1 17 input intercept, third order iicp ai 1.0 dbm f=1.8ghz 1 18 noise figure f ai 1.7 db f=1.8ghz 1 amplifier-lna, signal output ao, i ao =5ma, v ao =3.3v, f=1.8ghz 19 output current i ao 5.0 ma 1 20 output impedance vs. freq. s 22 diagram 3b 3 21 power gain s 21lna 12.0 db f=1.8ghz 1 amplifier-lna, signal input ai, i ao =0ma, v ao =3.3v, f=1.8ghz 22 input impedance, vs. freq. s 11 diagram 3c 3 23 max. input level, 1db change p ai 0.0 dbm f=1.8ghz 1 23 input intercept, third order iicp ai 20.0 dbm f=1.8ghz 1 amplifier-lna, signal output ao, i ao =0ma, v ao =3.3v, f=1.8ghz 24 output current i ao 0ma 1 25 output impedance vs. freq. s 22 diagram 3c 3 26 power gain s 21a < -17 db f=1.8ghz 1
pmb 2333 semiconductor group 16 09.97 ac/dc characteristics ac/dc characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. typical characteristics are the median of the production. supply voltage v vcc = 2.7v to 4.5v, ambient temperature t amb = +25 * mi/mo input/output including matching network # parameter symbol limit values unit test conditions test circuit min typ max mixer, signal input mi/mix, upconversion, r1,2=33ohm 27 input impedance vs .freq. z mi diagram 4a 4 28 max. input level, 1 db compression p mi -7 dbm f mi =0.66ghz 1* 29 input intercept point iicp3 mi 6 dbm f mi =0.66ghz 1* mixer, local oscillator input lo/lox, upconversion, r1,2=33ohm 30 input impedance vs freq. z lo diagram 4c 4 31 input level p lo 0 dbm f lo =2.0ghz 1* mixer, signal output mo/mox, f out = 2.66ghz, upconversion, r1,2=33ohm 32 output current i mo/x 10.4 ma with ext. resistors at mi/mix 1* 33 output resistance r modiff 600 ohm f mo =2.66ghz 34 output capacitance c modiff 0.57 pf f mo =2.66ghz 35 power gain p mi 8db f mo =2.66ghz 1* mixer, isolation between in-/output, f out = 2.66ghz, upconversion, r1,2=33ohm 37 lo to mo a lo-mo 30 db 1* 38 lo to mi a lo-mi 35 db 1* 39 mo to mi a mo-mi 40 db 1* 40 mo to lo a mo-lo 45 db 1*
pmb 2333 semiconductor group 17 09.97 ac/dc characteristics ac/dc characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. typical characteristics are the median of the production. supply voltage v vcc = 2.7v to 4.5v, ambient temperature t amb = +25 * matching network used ** referenced for specified mixer performance # parameter symbol limit values unit test conditions test circuit min typ max mixer, signal input mi/mix, downconversion, r1,2=180ohm 41 input impedance vs .freq. z mi diagram 4b 4 42 max. input level, 1 db compression p mi -15 dbm f=0.9ghz 2a 43 at mo/mox, if=45mhz p mi -14 dbm f=1.8ghz 2a 44 p mi -9 dbm f=2.5ghz 2a 45 input intercept point, iicp3 mi 0 dbm f=0.9ghz 2a 46 d f=800khz, if= 45mhz iicp3 mi -1 dbm f=1.8ghz 2a 47 iicp3 mi +5 dbm f=2.5ghz 2a 48 blocking level, p in ,unwan. -16 dbm f=0.9ghz 2a 49 d f=800khz, if=45mhz p bl ,unwan. -16 dbm f=1.8ghz 2a 50 p in , wanted = -20dbm p bl ,unwan. -10 dbm f=2.5ghz 2a 51 noise figure, ssb f mi 9dbf=0.9ghz* 52 (nfssb ? nfdsb+3db) f mi 11 db f=1.8ghz * 53 if=45mhz f mi 14 db f=2.5ghz * mixer, local oscillator input lo/lox, downconversion, r1,2=180ohm 54 input impedance vs freq. z lo diagram 4d 4 55 input level p lo -3 dbm f=0.9ghz 2a, ** 56 p lo -3 dbm f=1.8ghz 2a, ** 57 p lo -3 dbm f=2.5ghz 2a, **
pmb 2333 semiconductor group 18 09.97 ac/dc characteristics ac/dc characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. typical characteristics are the median of the production. supply voltage v vcc = 2.7v to 4.5v, ambient temperature t amb = +25 # parameter symbol limit values unit test conditions test circuit min typ max mixer, signal output mo/mox, downconversion, r1,2=180ohm 58 output current i mo+mox 4.0 ma incl. r1,r2 59 output resistance r modiff 32 kohm if=45mhz 2a 60 r modiff 25 kohm if=300mhz 2b 61 output capacitance c modiff 0.36 pf if=45mhz 2a 62 c modiff 0.39 pf if=300mhz 2b 63 power gain, if=45mhz p mi 15 db f=0.9ghz 2a 64 p mi 14 db f=1.8ghz 2a 65 p mi 9dbf=2.5ghz2a 66 power gain, if=300mhz p mi 7dbf=0.9ghz2b 67 p mi 7dbf=1.8ghz2b 68 p mi 2.5 db f=2.5ghz 2b mixer, isolation between in-/output, 0.9ghz, downconversion, r1,2=180ohm 69 mi to mo a mi-mo 50 db f mi = 945mhz, f lo = 900mhz 2a 70 lo to mo a lo-mo 40 db 2a 71 lo to mi a lo-mi 35 db 2a 72 mo to mi a mo-mi 60 db 2a 73 mo to lo a mo-lo 60 db 2a
pmb 2333 semiconductor group 19 09.97 2.4 test circuits test circuit 1 mixer/driver amplifier, upconversion mode test circuit f if [mhz] l1[nh] c1[pf] c2[pf] c3[pf] c k [pf] 1/mi ? 660 8.2 4.7 56 10 15 1/mo ?2 660 2.7 1.8 1.2 1 x c b v gc 16 bias te e ao output v cc c b c1 pmb 2333 9 8 v cc v cc to k o - balun 1:2 v cc c k c k c b c b 33 c2 c3 mi input lo input c b l1 l0 mo output toko balun =1:2 ? 617db-1016 1 bias te e dc ai input 33 c1 c2 c3 l1 82nh 82nh
pmb 2333 semiconductor group 20 09.97 test circuit 2a mixer/driver amplifier, downconversion mode test circuit f if [mhz] c b [pf] c k [pf] x x 2a 45 15/100 15 x x c b v gc 16 bias te e ao output v cc c b 180 180 c k pmb 2333 9 8 v cc v cc to ko balun 1:1 to k o balun 1:2 v cc c k c k c k c b c b mi input lo input c b =20:2 vogt transformer kit, 0.05mm wire =20:2 toko balun =1:1 ? 617db-1023 =1:2 ? 617db-1016 mo output 1 bias te e dc ai input
pmb 2333 semiconductor group 21 09.97 test circuit 2b mixer/driver amplifier, downconversion mode test circuit f if [mhz] l0[nh] l1[nh] c1[pf] c2[pf] c3[pf] c k [pf] 2b ? 300 680 150 2.7 12 1.8 15p c b 180 180 c2 v gc c k 16 pmb 2333 1 9 8 v cc v cc to k o balun 1:1 to k o - balun 1:2 bias te e dc ai input bias te e ao output v cc v cc c k c k c k c b c b c b c1 c3 mi input lo input mo output c b l1 l0 toko balun =1:1 ? 617db-1023 =1:2 ? 617db-1016
pmb 2333 semiconductor group 22 09.97 test circuit 3 s-parameter measurement of amplifier s11, s12, s21, s22 the s-parameters are tested at the indicated frequency on duroid 5880 teflon boards. via the nwa the capacitive coupling is done. the output levels at port1 and 2 for pin x and y are -30dbm. s11 and s22 have to be considered as design hints and are measured with siemens testboards. test test frequency mhz pin x pin y amp.s11, s12, s21, s22 30 - 3000 ai ao network analyzer z l =50ohm pin y port 1 port 2 dut pin x
pmb 2333 semiconductor group 23 09.97 diagram 3a s-parameter amplifier i ao =20ma, v cc =3.3v, f=30-3000mhz 10 25 50 100 250 1k 0 10 10 25 25 50 50 100 100 250 250 1k 1k s11 900 mhz 1.8 ghz 2.4 ghz 3.0 ghz s22 900 mhz 1.8 ghz 2.4 ghz 3.0 ghz 10 20 30 40 s21 0.05 0.1 0.15 0.2 s12 s21 900 mhz 1.8 ghz 2.4 ghz 3.0 ghz s12 900 mhz 1.8 ghz 2.4 ghz 3.0 ghz
pmb 2333 semiconductor group 24 09.97 diagram3b s-parameter amplifier i ao =5ma, v cc =3.3v, f=30-3000mhz 10 25 50 100 250 1k 0 10 10 25 25 50 50 100 100 250 250 1k 1k s11 900 mhz 1.8 ghz 2.4 ghz 3.0 ghz s22 900 mhz 1.8 ghz 2.4 ghz 3.0 ghz 5 10 15 20 s21 0.05 0.1 0.15 0.2 s12 s21 900 mhz 1.8 ghz 2.4 ghz 3.0 ghz s12 900 mhz 1.8 ghz 2.4 ghz 3.0 ghz
pmb 2333 semiconductor group 25 09.97 s-parameter amplifier i ao =0ma, v cc =3.3v, f=30-3000mhz 10 25 50 100 250 1k 0 10 10 25 25 50 50 100 100 250 250 1k 1k 900 mhz 1.8 ghz s11 3.0 ghz 900 mhz 1.8 ghz s22 3.0 ghz 0.1 0.2 0.3 s21 0.1 0.2 0.3 s12 s21 900 mhz 1.8 ghz 2.4 ghz 3.0 ghz s21 900 mhz 1.8 ghz 2.4 ghz 3.0 ghz
pmb 2333 semiconductor group 26 09.97 diagram 3d noise circles amplifier i ao =5ma, v cc =3.3v;f=0.9ghz f min = 1.055db r n = 10.17 w g opt = 16.01ms b opt = -2.36ms g opt = 0.128 exp(j 34.4) 5 10 15 20 25 30 35 40 45 50 75 100 150 200 250 500 1k 0 5 5 10 10 15 15 20 20 25 25 30 30 35 35 40 40 45 45 50 50 75 75 100 100 150 150 200 200 250 250 500 500 1k 1k 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 1.10 1.20 1.40 1.60 2.00 2.50 3.00 3.00 1.055 1.055
pmb 2333 semiconductor group 27 09.97 diagram 3e noise circles amplifier i ao =5ma, v cc =3.3v;f=1.8ghz f min = 1.278db r n = 7.52 w g opt = 21.54ms b opt = -1.59ms g opt = 0.053 exp(j 136.2) 5 10 15 20 25 30 35 40 45 50 75 100 150 200 250 500 1k 0 5 5 10 10 15 15 20 20 25 25 30 30 35 35 40 40 45 45 50 50 75 75 100 100 150 150 200 200 250 250 500 500 1k 1k 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 1.30 1.40 1.60 2.00 2.50 3.00 3.00 1.278 1.278
pmb 2333 semiconductor group 28 09.97 test circuit 4 s-parameter measurement of mixer s11, s12, s21, s22 the s-parameters are tested at the indicated frequency and the equivalent parallel or series circuit is calculated on this base. via the nwa the capacitive coupling is done and the open collector pins are connected to vcc. the output levels at port1 and 2 for pin x and y are -30dbm for mi and mo- impedances and -5dbm for the lo impedance.s-parameters have to be considered as design hints and are measured with siemens testboards. test test frequency [mhz] pin x pin y lo-input impedance 30 - 3000 8 9 mi-input impedance 30 - 3000 11 12 mo-output impedance 30 - 3000 5 6 network analyzer z l =50ohm pin y port 1 port 2 dut pin x
pmb 2333 semiconductor group 29 09.97 test circuit 4a mixer input impedance measurement test circuit 4b mixer local oscilllator impedance measurement nwa mi mix mo mox lo lox r r dc supply 50 w 50 w 33p 33p 50 w p1 p2 v s stb dut dc supply 1:2 mi mix mo mox lo lox p1 p2 nwa 5,6p 5,6p 5,6p 15n r r 10p 10p 50 w 15n 680nh 1h v s stb dc supply 50 w dut 1:1
pmb 2333 semiconductor group 30 09.97 test circuit 4c mixer output impedance measurement mi mix mo mox lo lox dut r r 50 w 50 w p1 p2 nwa power supply 3.3v 10p 1n 100n v s stb 33p 33p internal bias tees 50 w 1:2
pmb 2333 semiconductor group 31 09.97 diagram 4a mixer mi input impedance z mi , i mo/mox = 10ma, f=30-3000mhz diagram 4b mixer mi input impedance z mi , i mo/mox = 4ma, f=30-3000mhz 10 25 50 100 250 1k 0 10 10 25 25 50 50 100 100 250 250 1k 1k 900 mhz 1.8 ghz rdiff 3.0 ghz 900 mhz 1.8 ghz rsingle 3.0 ghz 10 25 50 100 250 1k 0 10 10 25 25 50 50 100 100 250 250 1k 1k 900 mhz 1.8 ghz rdiff 3.0 ghz rsingle 900 mhz 1.8 ghz 3.0 ghz
pmb 2333 semiconductor group 32 09.97 diagram 4c mixer lo input impedance z lo , i mo/mox = 10ma, f=30-3000mhz diagram 4d mixer lo input impedance z lo , i mo/mox = 4ma, f=30-3000mhz 10 25 50 100 250 1k 0 10 10 25 25 50 50 100 100 250 250 1k 1k rdiff 900 mhz 1.8 ghz 2.4 ghz 3.0 ghz rsingle 900 mhz 1.8 ghz 2.4 ghz 3.0 ghz 10 25 50 100 250 1k 0 10 10 25 25 50 50 100 100 250 250 1k 1k rdiff 900 mhz 1.8 ghz 2.4 ghz 3.0 ghz rsingle 900 mhz 1.8 ghz 2.4 ghz 3.0 ghz
pmb 2333 semiconductor group 33 09.97 diagram 5 gain, noise figure and i ao versus gain control voltage noise figure values without correction of attenuation ( 0.4 db ) at input of the amplifier ->nf min =1.7db at v gc =1.91v, amplifier current i ao =5ma, open collector voltage v ao =3.3v ( according test circuit 2, f=1.8ghz). -20 -15 -10 -5 0 5 10 15 20 25 30 0.511.522.5 v gc [v] gain / noise figure [db] 0 2 4 6 8 10 12 14 16 18 20 i ao [ma] gain noise figure i ao
pmb 2333 semiconductor group 34 09.97 3 application data 3.1 receiver application 3.1.1 shortform data measurement conditions ambient temperature t a = 25 c supply voltage v s = 2.7 v lna and mixer input signal f rf = 1960 mhz, p rf = -30 dbm lo signal f lo = 1735 mhz, p lo = -6 dbm if output f if = 225 mhz all measurements refer to sma connectors without consideration of pcb losses parameter symbol limit values unit remarks min. typ. max. mixer section mixer current i mixer 4mai mo +i mox conversion gain g c 8.5 db noise figure (dsb) nf dsb 6.4 db 3rd order input intercept point iicp3 +1 dbm 1db-compression point p 1db -8 dbm input blocking level p bl -7 dbm d f = 800 khz, -3db for wanted signal port matching rf return loss |s 11,rf |12 db lo return loss |s 11,lo |10 db if return loss |s 11,if |11 db isolations lo to if output a lo-if 40 db f = 1735 mhz
pmb 2333 semiconductor group 35 09.97 lo to rf input a lo-rf 43 25 35 db db db f lo = 1735 mhz f image,min = 1480 mhz f signal,max = 1990 mhz rf input to lo a rf-lo 48 db f = 1960 mhz lna section lna current i lna 4.6 ma gain g 12.5 db noise figure nf 1.8 db assuming a pcb loss of 0.25 db at ai, typical noise figure at matching circuit results to 1.55 db 3rd order input intercept point iicp3 0 dbm 1db-compression point p 1db -10 dbm ai return loss |s 11,ai |11 db ao return loss |s 11,ao |14 db measurement conditions ambient temperature t a = 25 c supply voltage v s = 2.7 v lna and mixer input signal f rf = 1960 mhz, p rf = -30 dbm lo signal f lo = 1735 mhz, p lo = -6 dbm if output f if = 225 mhz all measurements refer to sma connectors without consideration of pcb losses parameter symbol limit values unit remarks min. typ. max.
pmb 2333 semiconductor group 36 09.97 3.1.2 measurement results mixer section : figure 1: conversion gain an noise figure versus frequency figure 2: conversion gain and noise figure versus lo power 4 5 6 7 8 9 10 11 12 1200 1400 1600 1800 2000 2200 2400 rf frequency [mhz] [db] dsb noise figure conversion gain 4 5 6 7 8 9 10 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 lo power level [dbm] [db] conversion gain dsb noise figure
pmb 2333 semiconductor group 37 09.97 figure 3: conversion gain and noise figure versus if frequency figure 4: isolation lo to if in unbalanced case the matching network is replaced by a 10pf series capacitor to one port pin. the other port pin is tied to ground via a second 10pf capacitor. this means no power matching is done. 0 2 4 6 8 10 12 200 205 210 215 220 225 230 235 240 245 250 frequency [mhz] [db] conversion gain dsb noise figure -60 -50 -40 -30 -20 -10 0 1000 1500 2000 2500 3000 frequency [mhz] [db] fully balanced lo unbalanced mi unbalanced lo+mi unbalanced
pmb 2333 semiconductor group 38 09.97 figure 5: isolation lo to rf figure 6: isolation rf to lo -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 1000 1500 2000 2500 3000 frequency [mhz] [db] lo+mi unbalanced fully balanced mi unbalanced lo unbalanced -70 -60 -50 -40 -30 -20 -10 0 1000 1500 2000 2500 3000 frequency [mhz] [db] lo+mi unbalanced fully balanced mi unbalanced lo unbalanced
pmb 2333 semiconductor group 39 09.97 lna section figure 7: gain and noise figure versus frequency figure 8: reverse isolation and return loss versus frequency 6 7 8 9 10 11 12 13 14 15 16 1000 1500 2000 2500 3000 frequency [mhz] gain [db] 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 noise figure [db] gain noise figure -30 -25 -20 -15 -10 -5 0 1000 1500 2000 2500 3000 frequency [mhz] [db] |s 11 | |s 22 | |s 12 |
pmb 2333 semiconductor group 40 09.97 3.1.3 application hint - mixer metrics versus mixer current mixer current may be increased to obtain a higher input 3rd order intercept (iip3), higher 1 db compression point (p1db), and increased conversion gain (g). in a typical application, in order to increase mixer current from the minimum level of 800 m a, r5 and r6 are added as shown in the circuit diagram at the end of this section. these external resistors are placed in parallel to existing bias resistors internal to the pmb2333, thereby reducing the aggregate resistance in the emitters and increasing current. as current is increased by further reduction of the value of r5 and r6, the mixer inputs mi and mix may begin to suffer rf loading unless rf chokes are used between the mi/mix pins and r5 / r6 (compare test circuit 1). for the data presented in this section, mixer current was varied in a different manner. to eliminate the effects of rf impedance variation (due to rf loading) at mi / mix caused by changing the values of r5 and r6 for different mixer currents, these resistors were set equal to 1k w. mixer current was then varied by adjusting the power supply voltage vx. note that vx may take on positive values with respect to ground for low (e.g. 1ma) mixer currents, or negative values for higher currents. figure 9: modified mixer input circuitry pmb 2333 mixer mi mix 1 k w 1 k w 10 pf - 1 pf 3.9 nh 2.2 pf v x +
pmb 2333 semiconductor group 41 09.97 note that the mixer input impedance seen at mi / mix is a strong function of mixer current. the mixer input balanced-to-unbalanced transformer/matching circuitry was originally tuned for a current of 4ma, and was not re-optimized for each of the other current levels. despite this limitation, the return loss at the 50 w port is better than 10db over the entire 1 to 10 ma current range. the mixer output (mo / mox) and local oscillator (lo / lox) ports exhibit negligible change in impedance over this same current range. measurement conditions: t a = 25 c vcc = 2.7 v and 4.5v f rf = 1960 mhz f lo = 1735 mhz, p lo = -6 dbm the effect of power supply voltage on mixer metrics in seeking to improve mixer input third-order intercept and 1db compression point, it is important to understand the constraints on these parameters imposed by power supply voltage. refer to figure 10. receiver blocking is predominantly influenced by the mixers 1 db compression point (p1db) and not the input 3rd order intercept point (iip3). for a supply voltage of 4.5v, mixer p1db (referred to the input of the application circuitry) increases with additional mixer current, and begins to flatten out above 8ma. when supply voltage is decreased to 2.7v, mixer p1db starts flattening out at around 5ma. note how, at the 2.7v supply voltage, iip3 continues to increase at currents over 6ma while p1db flattens out. for a given conversion gain g, while operating at 2.7 volts, considering only the mixers input 3rd order intercept (iip3) might lead one to falsely conclude that increasing current beyond 6ma improves receiver blocking. if, however, conversion gain is decreased, it may be possible to improve the receiver's blocking level with additional mixer current. as shown in figure 10, the 1 db compression level, referred to the input, is limited by either current or the available voltage swing at the mixer output. the transition between these two regions takes place at 4ma for the specified conversion gain and supply voltage. figure 11 gives the dsb mixer noise figure versus the mixer current.
pmb 2333 semiconductor group 42 09.97 figure 10: mixer input intercept point (iip3), 1 db compression point (p1db) re- ferred to input, gain (g). figure 11: mixer dsb noise figure -15 -10 -5 0 5 10 15 024681012 mixer current [ ma ] [db] / [dbm] iicp3 p1db / 2.7v g p1db / 4.5v 5 6 7 8 9 10 024681012 mixer current [ma] dsb noise figure [db]
pmb 2333 semiconductor group 43 09.97 3.1.4 circuit diagram and pcb layout figure 12: circuit diagram
pmb 2333 semiconductor group 44 09.97 pcb dimensions: 80 x 50 mm substrate material: fr4 substrate height: 0.8 mm figure 13: pcb top side
pmb 2333 semiconductor group 45 09.97 figure 14: pcb bottom side
pmb 2333 semiconductor group 46 09.97 figure 15: pcb component placement
pmb 2333 semiconductor group 47 09.97 list of components item quantity reference value part 1 3 c9, c17, c23 1.0 pf smd/0603 2 1 c6 1.5 pf smd/0603 3 1 c8 1.8 pf smd/0603 4 1 c16 2.2 pf smd/0603 5 1 c7 2.7 pf smd/0603 6 1 c22 4.7 pf smd/0603 7 10 c3, c5, c10, c11, c12, c13, c14, c15, c18, c19 10 pf smd/0603 8 1 c2 12 pf smd/0603 9 1 c4 33 pf smd/0603 10 1 c1 680 pf smd/0603 11 1 c20 1.0 nf smd/0603 12 1 c21 1 m f smd/a tantalum 13 1 r1 0 w smd/0603 14 3 r3, r5, r6 180 w smd/0603 15 2 r4, r7 1.0 k w smd/0603 16 1 l6 3.3 nh smd/0805 murata lqp21a or lqp11a 17 1 l4 3.9 nh smd/0805 murata lqp21a or lqp11a 18 1 l5 6.8 nh smd/0805 murata lqp21a or lqp11a 19 1 l2 22 nh smd/0805 coilcraft 0805 20 1 l1 82 nh smd/0805 coilcraft 0805 21 1 l3 100 nh smd/0805 coilcraft 0805 22 1 ic1 pmb 2333 siemens 23 1 j1 connector stocko mks 1655-6-0-505 24 5 x1, x2, x3, x4, x5 sma connector suhner 82 sma 50-0-41 or rosenberger 32 k 141-400a2
pmb 2333 semiconductor group 48 09.97 3.2 upconversion application 3.2.1 shortform data measurement conditions ambient temperature t a = 25 c supply voltage v s = 2.7 v mixer input signal f if = 190 mhz, p if = -30 dbm lo signal f lo = 1717 mhz, p lo = -6 dbm mixer output and driver amplifier input signal f rf = 1907 mhz parameter symbol limit values unit remarks min. typ. max. mixer section mixer current i mixer 9.5 ma conversion gain g c 6db 3rd order input intercept point iicp3 +3.5 dbm 1db-compression point p 1db -7 dbm port matching rf return loss |s 11,rf |10 db lo return loss |s 11,lo |18 db if return loss |s 11,if |20 db isolations rf to lo input a rf-lo 38 db lo to rf output a lo-rf 30 db driver section driver current i ao 11.0 ma 17ma @ 3.3v gain g 13.1 db 3rd order input intercept point iicp3 +4.5 dbm 1db-compression point p 1db -6 dbm
pmb 2333 semiconductor group 49 09.97 3.2.2 measurement results figure 16: mixer conversion gain versus frequency ai return loss |s 11,ai |14 db ao return loss |s 11,ao |12 db measurement conditions ambient temperature t a = 25 c supply voltage v s = 2.7 v mixer input signal f if = 190 mhz, p if = -30 dbm lo signal f lo = 1717 mhz, p lo = -6 dbm mixer output and driver amplifier input signal f rf = 1907 mhz parameter symbol limit values unit remarks min. typ. max. 0 1 2 3 4 5 6 7 1800 1850 1900 1950 2000 frequency [mhz] gain [db]
pmb 2333 semiconductor group 50 09.97 figure 17: driver amplifier gain, reverse isolation, return loss versus frequency figure 18: mixer isolations versus frequency -30 -25 -20 -15 -10 -5 0 5 10 15 20 1000 1500 2000 2500 3000 frequency [mhz] [db] |s 21 | |s 22 | |s 11 | |s 12 | -60 -50 -40 -30 -20 -10 0 1000 1500 2000 2500 3000 frequency [mhz] [db] lo to rf rf to lo
pmb 2333 semiconductor group 51 09.97 3.2.3 circuit diagram and pcb layout figure 19: circuit diagram
pmb 2333 semiconductor group 52 09.97 pcb dimensions: 80 x 50 mm substrate material: fr4 substrate height: 0.8 mm figure 20: pcb top side
pmb 2333 semiconductor group 53 09.97 figure 21: pcb bottom side
pmb 2333 semiconductor group 54 09.97 figure 22: component placement top side
pmb 2333 semiconductor group 55 09.97 figure 23: component placement bottom side
pmb 2333 semiconductor group 56 09.97 upconversion application - list of components item quantity reference value part 1 1 c9 1.0 pf smd/0603 2 1 c6 1.5 pf smd/0603 3 1 c8 1.8 pf smd/0603 4 1 c3 2.2 pf smd/0603 5 1 c7 2.7 pf smd/0603 6 2 c2, c4 3.3 pf smd/0603 77 c1, c5, c11, c12, c13, c14, c15 10 pf smd/0603 8 1 c17 27 pf smd/0603 9 1 c16 68 pf smd/0603 10 3 c18, c19, c20 1.0 nf smd/0603 11 1 c21 1.0 m f smd/a tantalum 12 2 j3, j4 0 w smd/0603 13 1 r1 10 w smd/0603 14 1 r3 27 w smd/0603 15 2 r5, r6 33 w smd/0603 16 2 r4, r7 1 k w smd/0603 17 2 l1, l6 3.3 nh smd/0603 murata lqp11a 18 2 l4, l5 22 nh smd/0805 coilcraft 0805 19 1 l3 33 nh smd/0805 coilcraft 0805 20 1 ic1 pmb 2333 siemens 21 1 j1 connector stocko mks 1655-6-0-505 22 5 x1, x2, x3, x4, x5 sma connector suhner 82 sma 50-0-41 or rosenberger 32 k 141-400a2
pmb 2333 semiconductor group 57 09.97 3.3 receiver/saw application 3.3.1 shortform data measurement conditions ambient temperature t a = 25 c supply voltage v s = 3.6 v lna and mixer input signal f rf = 890 mhz, p rf = -40 dbm lo signal f lo = 972 mhz, p lo = -6 dbm if output f if = 82 mhz all measurements refer to sma connectors without consideration of pcb losses the figures in the mixer section are calculated from a measurement saw filter + mixer assuming an insertion loss of 3.1db for the filter at measurement frequency (890mhz). parameter symbol typ. value unit remarks mixer section mixer current i mixer 10 ma i mo +i mox conversion gain g c 4.5 db noise figure (ssb) nf ssb 12 db 3rd order input intercept point iicp3 +6.5 dbm input 1db-compression point p 1db -3 dbm lna section lna current i lna 17 ma gain g lna 20 db noise figure nf 1.75 db 3rd order input intercept point iicp3 0 dbm input 1db-compression point p 1db -11 dbm ai return loss |s 11, ai |14 db ao return loss |s 11, ao |15 db
pmb 2333 semiconductor group 58 09.97 cascade figures lna, resistive 3.1 db pad (see schematic), saw filter, mixer cascade gain g 18 db cascade noise figure (ssb) nf 3.35 db 3rd order input intercept point iicp3 -8 dbm input 1db-compression point p 1db -17 dbm measurement conditions ambient temperature t a = 25 c supply voltage v s = 3.6 v lna and mixer input signal f rf = 890 mhz, p rf = -40 dbm lo signal f lo = 972 mhz, p lo = -6 dbm if output f if = 82 mhz all measurements refer to sma connectors without consideration of pcb losses the figures in the mixer section are calculated from a measurement saw filter + mixer assuming an insertion loss of 3.1db for the filter at measurement frequency (890mhz). parameter symbol typ. value unit remarks
pmb 2333 semiconductor group 59 09.97 3.3.2 system calculations due to the use of a saw filter for mixer input matching and balancing an isolated measurement of the mixer figures is not possible. the following system calculations have valid entries only for the gain, ip3, and noise figure. the input values are either from extra measurements (e.g. saw filter insertion loss) or adjusted to give a cascade figure that can be measured (e.g. filter+mixer ip3). all non-fat typeface figures have no meaning. lna measurement hewlett-packard noisecalc appcad +---+ +---+ -| 1 +---| 2 +- +---+ +---+ noise figure (db) 0.10 1.65 gain (db) -0.10 20.00 ip3 (dbm) 100.00 20.00 system temp. (oc) 25.0 reference temperature (oc) 25.0 input power (dbm) -30.0 noise bandwidth (mhz) 1.00000 pout (dbm) -30.1 -10.1 cascade nf (db) 1.75 cascade gain (db) 19.90 noise temperature (ok) 143.9 input intercept point (dbm) 0.1 signal-to-noise ratio (db) 82.2 output intercept point (dbm) 20.0 spur free dynamic range (db) 74.9 im3 output level (dbm) -70.3 nominal detectable sig (dbm) -112.2 1) pcb loss 2) pmb 2333 lna
pmb 2333 semiconductor group 60 09.97 saw filter and mixer hewlett-packard noisecalc appcad +---+ +---+ -| 1 +---| 2 +- +---+ +---+ noise figure (db) 3.10 12.00 gain (db) -3.10 4.50 ip3 (dbm) 100.00 11.00 system temp. (oc) 25.0 reference temperature (oc) 25.0 input power (dbm) -30.0 noise bandwidth (mhz) 1.00000 pout (dbm) -33.1 -28.6 cascade nf (db) 15.10 cascade gain (db) 1.40 noise temperature (ok) 9094.2 input intercept point (dbm) 9.6 signal-to-noise ratio (db) 68.9 output intercept point (dbm) 11.0 spur free dynamic range (db) 72.3 im3 output level (dbm) -107.8 nominal detectable sig (dbm) -98.9 1) saw filter s+m b4672 2) pmb 2333 mixer overall figures hewlett-packard noisecalc appcad +---+ +---+ +---+ +---+ +---+ -| 1 +---| 2 +---| 3 +---| 4 +---| 5 +- +---+ +---+ +---+ +---+ +---+ noise figure (db) 0.10 1.65 3.10 3.10 12.00 gain (db) -0.10 20.00 -3.10 -3.10 4.50 ip3 (dbm) 200.00 20.00 200.00 40.00 11.00 system temp. (oc) 25.0 reference temperature (oc) 25.0 input power (dbm) -30.0 noise bandwidth (mhz) 1.00000 pout (dbm) -30.1 -10.1 -13.2 -16.3 -11.8 cascade nf (db) 3.35 cascade gain (db) 18.20 noise temperature (ok) 337.0 input intercept point (dbm) -7.9 signal-to-noise ratio (db) 80.7 output intercept point (dbm) 10.3 spur free dynamic range (db) 68.5 im3 output level (dbm) -55.9 nominal detectable sig (dbm) -110.6 1) pcb loss 2) pmb 2333 lna 3) resistive pad, 3.1db attenuation 4) saw filter s+m b4672 5) pmb 2333 mixer
pmb 2333 semiconductor group 61 09.97 3.3.3 measurement results cascaded figure measurements figure 24: cascade gain, ssb noise figure versus frequency figure 25: cascade gain, ssb noise figure versus lo power -25 -20 -15 -10 -5 0 5 10 15 20 800 850 900 950 1000 frequency [mhz] gain [db] 0 1 2 3 4 5 6 7 8 9 noise figure [db] nf gain image response 0 2 4 6 8 10 12 14 16 18 20 -30 -25 -20 -15 -10 -5 0 5 lo power level [dbm] conversion gain [db] 0 1 2 3 4 5 6 7 8 9 10 ssb noise figure [db] nf gain
pmb 2333 semiconductor group 62 09.97 figure 26: ai input return loss versus frequency -25 -20 -15 -10 -5 0 0 500 1000 1500 2000 frequency [mhz] |s 11, ai |
pmb 2333 semiconductor group 63 09.97 3.3.4 circuit diagram and pcb layout figure 27: circuit diagram
pmb 2333 semiconductor group 64 09.97 pcb dimensions: 80 x 50 mm substrate material: fr4 substrate height: 0.8 mm figure 28: pcb top side
pmb 2333 semiconductor group 65 09.97 figure 29: pcb bottom side
pmb 2333 semiconductor group 66 09.97 : figure 30: pcb component placement top
pmb 2333 semiconductor group 67 09.97 figure 31: pcb component placement bottom
pmb 2333 semiconductor group 68 09.97 receiver/saw application - list of components item quantity reference value part 1 1 c9 1.8 pf smd/0603 2 2 c8, c18 4.7 pf smd/0603 3 2 c6, c7 5.6 pf smd/0603 4 2 c2, c3 15 pf smd/0603 5 1 c4 18 pf smd/0603 6 2 c16, c17 27 pf smd/0603 7 8 c5, c10, c12, c14, c15, c19, c24, c25 33 pf smd/0603 8 2 c11, c20 1 nf smd/0603 9 1 c1 3.3 nf smd/0603 10 1 c21 1 m f smd/a tantalum 11 1 j2 0 w smd/0603 12 1 r1 27 w smd/0603 13 2 r5, r6 33 w smd/0603 14 1 r3 56 w smd/0603 15 2 r4, r7 1.0 k w smd/0603 16 1 l1 3.3 nh smd/0603 toko ll1608-fh 17 1 l4 4.7 nh smd/0603 toko ll1608-fh 18 1 l6 8.2 nh smd/0603 toko ll1608-fh 19 1 l5 33 nh smd/0603 toko ll1608-fh 20 2 l3, l7 68 nh smd/0805 toko ll1608-fh 21 3 l2, l8, l9 100 nh smd/0805 toko ll1608-fh 22 1 ic1 pmb 2333 siemens 23 1 fil1 b4672 s+m 24 1 j1 connector stocko mks 1655-6-0-505 25 5 x1, x2, x3, x4, x5 sma connector suhner 82 sma 50-0-41 or rosenberger 32 k 141-400a2
pmb 2333 semiconductor group 69 09.97 4 package outlines p-tssop-16 (plastic package) sorts of packing package outlines for tubes, trays etc. are contained in our data book package information. dimensions in mm smd = surface mounted device


▲Up To Search▲   

 
Price & Availability of PMB2333-R

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X